Premium
Power production and working capacity of rabbit tibialis anterior muscles after chronic electrical stimulation at 10 Hz.
Author(s) -
Jarvis J C
Publication year - 1993
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1993.sp019852
Subject(s) - stimulation , maximum power principle , muscle fatigue , power (physics) , chemistry , medicine , anatomy , electromyography , physical medicine and rehabilitation , physics , quantum mechanics
1. The muscles of the distal anterior compartment of the left hindlimb of rabbits were subjected to continuous indirect electrical stimulation at 10 Hz for periods of up to 12 weeks by means of an implantable stimulator. 2. The maximum shortening velocity (Vmax) and the velocity for maximum power production in single contractions (Vopt) were reduced to 42% and 32% of control values respectively after 12 weeks of stimulation. The rate of change of these parameters was greatest between the second and sixth week of stimulation. These changes, it is suggested, reflect the documented time course of the replacement of fast with slow isoforms of myosin. 3. The reductions in force production and speed of the stimulated muscles combined to produce a marked, progressive decline in the maximum power produced in single contractions. After 8 weeks of stimulation, the maximum power output had fallen to less than 10% of the control value. 4. The fatigue resistance of the stimulated and control muscles was tested over several hours of cyclical shortening contractions designed to elicit an initial power output of 10 W kg‐1 with the muscles set to contract at Vopt. This level of work output represented about 1.6% (control) and 25% (12‐week‐stimulated) of the absolute maximum power output achieved during single contractions. 5. Despite the large reduction in the maximum power output of single contractions, the stimulated muscles showed less than 10% reduction in their power output during the fatigue tests over periods of up to 7 h. The control muscles showed a 70% reduction over the same period. There was no difference in the fatigue resistance under this protocol between muscles stimulated for 2 weeks and those stimulated for longer periods. Transformation of myosin isoforms, which is known to occur later than 2 weeks after the start of stimulation, is not necessary for the induction of this degree of fatigue resistance.