z-logo
Premium
Expression and characterization of a canine hippocampal inwardly rectifying K+ current in Xenopus oocytes.
Author(s) -
Cui J,
Mandel G,
DiFrancesco D,
Kline R P,
Pennefather P,
Datyner N B,
Haspel H C,
Cohen I S
Publication year - 1992
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1992.sp019375
Subject(s) - xenopus , reversal potential , chemistry , voltage clamp , time constant , hippocampal formation , extracellular , biophysics , hyperpolarization (physics) , analytical chemistry (journal) , patch clamp , endocrinology , membrane potential , stereochemistry , biochemistry , biology , electrical engineering , receptor , chromatography , nuclear magnetic resonance spectroscopy , gene , engineering
1. An inwardly rectifying potassium current expressed in Xenopus laevis oocytes injected with canine hippocampal poly(A)+ RNA was investigated with the two‐microelectrode voltage clamp technique. 2. Xenopus oocytes injected with canine hippocampal poly(A)+ RNA expressed a current activated by hyperpolarization. This current contained an instantaneous and a time‐dependent component. Both components were inwardly rectifying and could be blocked by extracellular Cs+ or Ba2+. 3. The expressed current was carried mainly by K+. Its reversal potential measured in different [K+]os could be fitted by the Nernst equation with a slope of ‐50.7 per tenfold change in [K+]o. Extracellular Cl‐ and Na+ made minimal contributions to the current. 4. The activation of the expressed current depended on both voltage and [K+]o. Activation started near EK and the activation curve shifted along the voltage axis in parallel with EK when [K+]o was altered. 5. The activation time constants of the expressed current also depended on both voltage and [K+]o. The voltage dependence of the time constants was bell‐shaped and the peak value was at a potential 30‐50 mV more negative than EK. The voltage dependence of the time constants shifted along the voltage axis when EK was changed. 6. The poly(A)+ RNA extracted from canine hippocampus was fractionated in a 10‐31% linear sucrose gradient. The size of the mRNA required to express the inwardly rectifying current was estimated to be around 4 kb. 7. In conclusion, the expressed current is an inwardly rectifying potassium current. The canine hippocampal mRNA should be an excellent source for expression‐cloning of the inward rectifier channel.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here