Premium
Fusimotor control of muscle spindle sensitivity during respiration in the cat.
Author(s) -
Greer J J,
Stein R B
Publication year - 1990
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1990.sp017982
Subject(s) - muscle spindle , efferent , intercostal muscle , respiration , muscles of respiration , anatomy , chemistry , intercostal nerves , biology , respiratory system , afferent
1. The two types of fusimotor neurones, dynamic and static, can be differentiated by their effects on muscle spindle afferents. We have recorded the activity of muscle spindle primary afferents from the intercostal nerves of anaesthetized or decerebrate cats. A 4 Hz sinusoidal stretch was applied to the muscle containing the spindles of interest before and after crushing the nerve proximal to the recording site to eliminate fusimotor effects. The relative activity of the dynamic and static fusimotor neurones was inferred from the change in the spindle afferents' response. 2. Some areas of intercostal muscle normally showed phasic activity linked to respiration, where as other areas of intercostal muscle showed no EMG activity under our experimental conditions. In areas of intercostal muscle lacking EMG activity, the afferents' mean rate was higher and the modulation around the mean was lower at all phases of the breathing cycle when the efferent supply was intact. This result suggests the muscle spindles were receiving a steady level of static fusimotor activity. 3. Spindle primary afferents from regions of intercostal muscle that were typically recruited during respiration had an additional increase in mean rate and modulation around the mean rate in phase with the EMG activity. This is suggestive of phasic activation of dynamic fusimotor neurones in addition to static fusimotor discharge. 4. Thus, the two types of fusimotor neurones can be activated separately by the CNS to control the sensitivity of muscle spindles. The regional differences in the recruitment patterns of fusimotor neurones parallels the functional specializations of different areas of the intercostal muscles. The temporal modifications of fusimotor activity during each respiratory cycle means that the segmental reflex gain will vary in those intercostal muscles that are active during respiration. 5. These findings regarding the CNS recruitment of the two types of fusimotor neurones during respiration are similar to those reported for the hindlimb extensors during locomotion, but differ from those reported for jaw muscles during chewing. This may reflect differing control strategies being used by the CNS to meet the unique demands of the various rhythmical movements.