z-logo
Premium
Hyperpolarization of frog primary afferent fibres caused by activation of a sodium pump.
Author(s) -
Davidoff R A,
Hackman J C
Publication year - 1980
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1980.sp013243
Subject(s) - hyperpolarization (physics) , chemistry , biophysics , ouabain , potassium , sodium , sucrose gap , membrane potential , spinal cord , excitatory postsynaptic potential , stimulation , anatomy , biochemistry , medicine , neuroscience , biology , stereochemistry , receptor , organic chemistry , nuclear magnetic resonance spectroscopy
1. In the isolated frog spinal cord repetitive stimulation of a lumbar dorsal root produced a sustained negative potential recorded from an adjacent inactive dorsal root by sucrose gap techniques. This negative potential was followed by a positive potential, an indication that the dorsal root terminals were hyperpolarized. Increasing the duration of the tetanus applied to the active root increased the amplitude and duration of the after‐hyperpolarization which could be up to 6 mV and 3 min respectively. 2. The hyperpolarization presumably reflected an increased rate of active sodium pumping. Since it was reversibly reduced by metabolic inhibitors (dinitrophenol, NaCN) and cooling (Q10, 2 . 6) it was clearly dependent upon intact metabolic activity. In addition, a variety of procedures used to inhibit sodium pumps (including application of ouabain, elimination of potassium from the superfusate, and partial substitution of lithium for sodium ions) significantly and reversibly decreased the potential. 3. The hyperpolarization was not dependent upon intact chemical synaptic transmission since it could survive prolonged immersion of the cord in Ringer solution containing manganese or magnesium ions. 4. It is suggested that the hyperpolarization of inactive fibres resulted from a decreased extracellular potassium concentration in the dorsal horn produced as a result of a pumping mechanism which extruded sodium and transported potassium inwards by dorsal root fibres directly activated by the tetanus.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here