z-logo
Premium
Internal effects of divalent cations on potassium permeability in molluscan neurones.
Author(s) -
Gorman A L,
Hermann A
Publication year - 1979
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1979.sp013012
Subject(s) - divalent , chemistry , biophysics , ionic radius , ion , extracellular , reversal potential , repolarization , analytical chemistry (journal) , electrophysiology , patch clamp , medicine , biochemistry , chromatography , receptor , organic chemistry , biology
1. Electrophoretic injection of Ca ions into Aplysia pace‐maker neurones activates an outward current, carried primarily by K ions, whose magnitude is determined by the intensity and duration of the injection current, the position of the injection electrode within the cell and the holding potential. 2. The efflux of K ions measured with an extracellular K sensitive electrode is a linear function of the Ca activated outward current and disappears at its reversal potential. 3. The outward current decays exponentially with an early and late phase. The early but not the late phase is temperature dependent with a Q10 of about 3‐5. 4. Of the divalent cations which activate the outward current, Ca is the most effective followed by Cd, Hg, Sr, Mn and Fe. Injections of Ba, Co, Cu, Mg, Ni and Zn are ineffective. 5. Low temperatures or prolonged injection of Cd or Hg, increase the amplitude of the outward current activated by Ca. 6. Prolonged injection of Ba inhibits the Ca activated outward current and reduces substantially all currents carried by K ions. 7. It is concluded that the effectiveness of a divalent cation in activating the K current is, in part, related to its ionic radius, and that the site of activation can accommodate ionic radii between about 0.76 and 1.13 A.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here