Premium
The viscosity of mammalian nerve axoplasm measured by electron spin resonance.
Author(s) -
Haak R A,
Kleinhans F W,
Ochs S
Publication year - 1976
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1976.sp011624
Subject(s) - axoplasm , microviscosity , chemistry , nuclear magnetic resonance , viscosity , analytical chemistry (journal) , materials science , axon , anatomy , composite material , physics , biochemistry , chromatography , membrane , medicine
1. The microviscosity of the axoplasm of can sciatic nerve was determined by an in vitro electron spin resonance (e.s.r.) method using the spin label tempone. To identify the spin label signal as one arising only from within the axoplasm, Ni2+ was used as a line broadening agent. In one series of experiments in nerves with sheath intact the Ni2+ ion was shown to eliminate the tempone signal arising from the surface water, and in another series of experiments, with the sheath slit, to eliminate the signal from the extracellular space as well. 2. A microviscosity of less than 5 centipoise (cP), i.e. 5x that of water, was determined for the axoplasm. Changes in the viscosity of the nerve axoplasm as a function of temperature over a range of 38 degrees down to 2 degrees C were seen to follow closely the viscosity change found for a water solution. 3. The microviscosity of nerve axoplasm and its change with temperature were related to axoplasmic transport of material in nerve fibres. The results were used to exclude a large increase in viscosity at low temperatures as the cause for the cold‐block of fast axoplasmic transport.