Premium
The effects of pH changes on the frequency of miniature end‐plate potentials at the frog neuromuscular junction.
Author(s) -
Cohen I,
Van Der Kloot W
Publication year - 1976
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1976.sp011601
Subject(s) - extracellular , intracellular ph , neuromuscular junction , intracellular , chemistry , depolarization , biophysics , biochemistry , biology , neuroscience
As reported by Landau & Nachshen (1975), a decrease in extracellular pH at the frog neuromuscular junction leads to an increase in min.e.p.p. frequency. 2. Decreasing the extracellular pH still increases the min.e.p.p. frequency when the bathing Ringer contains 10 mM‐Ca2+, in place of the usual 2‐5 mM. At the mammalian neuromuscular junction, the elevated Ca2+ blocks the effect of the pH change on the min.e.p.p. frequency (Hubbard, Jones & Landau, 1968). 3. In Cl‐‐free solution (isethionate or methylsulphate substitution) min.e.p.p. frequency is no longer a monotonic function of decreasing pH. Instead there is an optimum pH for spontaneous release between pH 6‐6 and 8‐6. 4. This suggests that in Cl‐ containing Ringer min.e.p.p. frequency increases with increasing extracellular acidity because there is a change in the PCl of the nerve terminal leading to a depolarization. In agreement with this idea,in low Ca2+ Ringer, acid pH has little effect on the min.e.p.p. frequency. 5. Decreasing the intracellular pH by raising PCO2 produces substantial increases in the min.e.p.p. frequency. The effects are much greater than the effects of equal changes of H+ in the extracellular solution. 6. Possible explanations for the effects of increased PCO2 are discussed. Although release of Ca2+ from mitochondria or other unknown effects of intracellular pH change or molecular CO2 are possible, the results do give some support to the hypothesis that an important step in transmitter release involves an electrostatic repulsion between fixed membrane surface charges on the transmitter containing vesicles and the inner face of the nerve terminal. The surface charge density would be decreased by a lower pH in the axoplasm, and this would increase the rate of spontaneous transmitter release, in agreement with the observations.