z-logo
Premium
Some properties of the presynaptic nerve terminals in a mammalian sympathetic ganglion
Author(s) -
Dunant Y.
Publication year - 1972
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1972.sp009768
Subject(s) - sympathetic ganglion , neuroscience , ganglion , chemistry , sympathetic nerve , anatomy , biology , stimulation
1. Superior cervical ganglia of adult rats were excised and maintained in vitro in stable conditions. Potentials were recorded with external electrodes. After transmission was blocked by mecamylamine, a small potential change was recorded from the rostral area of the ganglion in response to preganglionic stimulation. 2. This electrical response was identified as the presynaptic action potential recorded from the nerve terminals by a number of criteria based on histological and physiological considerations including the disappearance of the spike in a glucose free solution. As shown by Nicolescu, Dolivo, Rouiller & Foroglou‐Kerameus (1966) on the same preparation this condition causes an irreversible and selective lesion of the presynaptic nerve endings. 3. A suitable concentration of mecamylamine permitted the presynaptic response and the excitatory post‐synaptic potential (EPSP) to be recorded simultaneously. As the stimulus was increased, the EPSP increased linearly with the amplitude of the presynaptic response. 4. After replacement of potassium ions in the bathing solution by caesium and during the early phase of post‐tetanic facilitation there was an increase in the presynaptic response accompanied by a disproportionate increase in the EPSP. 5. No changes in the presynaptic response were found in the presence of the following drugs, all of which depressed the EPSP: acetylcholine, hemicholinium, curare, further doses of ganglion‐blocking agents, and high Mg 2+ and low Ca 2+ concentrations. 6. Ouabain (4·5 × 10 −4 M ) reversibly decreased the amplitude of the presynaptic response and increased the spontaneous release of transmitter. The EPSP was at first enhanced and then depressed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here