Premium
Firing patterns of gastrocnemius motor units in the decerebrate cat
Author(s) -
Burke R. E.
Publication year - 1968
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1968.sp008527
Subject(s) - tonic (physiology) , motor unit , chemistry , excitatory postsynaptic potential , gastrocnemius muscle , stimulation , anatomy , stimulus (psychology) , neuroscience , biology , skeletal muscle , psychology , receptor , biochemistry , psychotherapist
1. The patterns of medial gastrocnemius (MG) motor unit firing in response to MG muscle stretch have been studied in decerebrate cats, using intracellular recording techniques. In most of the units, the motoneurone axonal conduction velocity and cell input resistance were measured, and the maximum amplitude and wave form of the group Ia composite EPSP evoked by MG nerve stimulation were determined. The mechanical properties of the muscle unit portion of each motor unit were also studied. 2. Motor unit firing patterns were classified into two groups, ‘tonic’ and ‘phasic’. With few exceptions, tonic motor units showed sustained firing throughout MG stretches of varying duration, while most phasic units did not fire at all to the same stimulus. Tetanization of the afferents did not convert any of the previously phasic units to tonic firing. 3. MG motor units in this study were divided into three groups on the basis of the muscle unit twitch properties. Units with short twitch time to peak values (< 35 msec) were subdivided into two groups according to twitch tension output: ( a ) type F, with twitch tension > 1·5 g, and ( b ) type F * , with twitch tension < 1·5 g. Units with slow twitch time to peak (> 35 msec) were classified as type S. 4. The presence or absence of tonic firing during sustained MG stretch was found to be significantly related to the following factors: ( a ) the motor unit twitch type, in that tonic firing was observed in 100% of type S, 70% of type F * , and only 10% of type F units; ( b ) the apparent motoneurone size, in that tonic units tended to have higher cell input resistance values and slower axonal conduction velocities than phasic units; and ( c ) the density and spatial organization of the group Ia synaptic input, in that the MG monosynaptic EPSPs found in tonic motor units tended to be both larger in amplitude and longer in duration than those found in phasic units. 5. The intrinsic properties of MG motor units, the characteristics of the group Ia synaptic input to the motoneurones and the unit firing patterns elicited by MG muscle stretch appear to be mutually interrelated, forming a pattern of motor units within the MG pool which is analogous to the pattern thought to characterize the motor units belonging to ‘slow’ and ‘fast’ muscles. In most respects this pattern of MG motor units appears to be a continuum without clearly separable subgroups.