Premium
Presence of synchrony‐generating hubs in the human epileptic neocortex
Author(s) -
Kandrács Ágnes,
Hofer Katharina T.,
Tóth Kinga,
Tóth Estilla Z.,
Entz László,
Bagó Attila G.,
Erőss Loránd,
Jordán Zsófia,
Nagy Gábor,
Fabó Dániel,
Ulbert István,
Wittner Lucia
Publication year - 2019
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp278499
Subject(s) - neuroscience , excitatory postsynaptic potential , inhibitory postsynaptic potential , neocortex , bursting , interneuron , population , ictal , epilepsy , premovement neuronal activity , biology , neuron , medicine , environmental health
Key points• Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. • In the present study, we show that epileptiform interictal‐like spikes and seizures emerged in human neocortical slices by blocking GABA A receptors, following the disappearance of the spontaneously occurring synchronous population activity. • Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non‐epileptic patients. • Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. • These results help us to understand the role of excitatory and inhibitory neurons in synchrony‐generating mechanisms, in both epileptic and non‐epileptic conditions.Abstract Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24‐channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABA A receptors, and several variations of spatially and temporally simple or complex interictal‐like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one‐half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal‐like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition‐induced epileptiform events were initiated mainly by non‐synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.