Premium
Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia
Author(s) -
Wleklinski Matthew J.,
Kannankeril Prince J.,
Knollmann Bjӧrn C.
Publication year - 2020
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp276757
Subject(s) - catecholaminergic polymorphic ventricular tachycardia , ryanodine receptor 2 , ryanodine receptor , calsequestrin , medicine , calcium , calcium signaling , cardiology , endoplasmic reticulum , calmodulin , biology , endocrinology , microbiology and biotechnology
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress‐induced cardiac channelopathy that has a high mortality in untreated patients. Our understanding has grown tremendously since CPVT was first described as a clinical syndrome in 1995. It is now established that the deadly arrhythmias are caused by unregulated ‘pathological’ calcium release from the sarcoplasmic reticulum (SR), the major calcium storage organelle in striated muscle. Important questions remain regarding the molecular mechanisms that are responsible for the pathological calcium release, regarding the tissue origin of the arrhythmic beats that initiate ventricular tachycardia, and regarding optimal therapeutic approaches. At present, mutations in six genes involved in SR calcium release have been identified as the genetic cause of CPVT: RYR2 (encoding ryanodine receptor calcium release channel), CASQ2 (encoding cardiac calsequestrin), TRDN (encoding triadin), CALM1 , CALM2 and CALM3 (encoding identical calmodulin protein). Here, we review each CPVT subtype and how CPVT mutations alter protein function, RyR2 calcium release channel regulation, and cellular calcium handling. We then discuss research and hypotheses surrounding the tissue mechanisms underlying CPVT, such as the pathophysiological role of sinus node dysfunction in CPVT, and whether the arrhythmogenic beats originate from the conduction system or the ventricular working myocardium. Finally, we review the treatments that are available for patients with CPVT, their efficacy, and how therapy could be improved in the future.