Premium
Intercellular Ca 2+ signalling in the adult mouse cochlea
Author(s) -
Sirko Piotr,
Gale Jonathan E,
Ashmore Jonathan F
Publication year - 2018
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp276400
Subject(s) - organ of corti , ppads , gap junction , cochlea , extracellular , purinergic receptor , carbenoxolone , suramin , biology , biophysics , microbiology and biotechnology , intracellular , receptor , chemistry , anatomy , biochemistry
Key points Intercellular Ca 2+ waves are increases in cytoplasmic Ca 2+ levels that propagate between cells. Periodic Ca 2+ waves have been linked to gene regulation and are thought to play a crucial role in the development of our hearing epithelium, the organ of Corti and the acquisition of hearing. We observed regular periodic intercellular Ca 2+ waves in supporting cells of an ex vivo preparation of the adult mouse organ of Corti, and these waves were found to propagate independently of extracellular ATP and were inhibited by the gap junction blockers 1‐octanol and carbenoxolone. Our results establish that the existence of periodic Ca 2+ waves in the organ of Corti is not restricted to the prehearing period.Abstract We have investigated wave‐like cytoplasmic calcium (Ca 2+ ) signalling in an ex vivo preparation of the adult mouse organ of Corti. Two types of intercellular Ca 2+ waves that differ in propagation distance and speed were observed. One type was observed to travel up to 100 μm with an average velocity of 7 μm/s. Such waves were initiated by local tissue damage in the outer hair cell region. The propagation distance was decreased when the purinergic receptor antagonists pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonic acid (PPADS; 50 μ m ) or suramin (150 μ m ) were added to the extracellular buffer. Immunocytochemical analysis and experiments with calcium indicator dyes showed that both P2X and P2Y receptors were present in supporting cells. A second class of waves identified to travel longitudinally along the organ of Corti propagated at a lower velocity of 1–3 μm/s. These ‘slow’ Ca 2+ waves were particularly evident in the inner sulcus and Deiters’ cells. They travelled for distances of up to 500 μm. The slow Ca 2+ signalling varied periodically (approximately one wave every 10 min) and was maintained for more than 3 h. The slow waves were not affected by apyrase, or by the P2 receptor agonists suramin (150 μ m ) or PPADS (50 μ m ) but were blocked by the connexin channel blockers octanol (1 m m ) and carbenoxolone (100 μ m ). It is proposed that the observed Ca 2+ waves might be a physiological response to a change in extracellular environment and may be involved in critical gene regulation activities in the supporting cells of the cochlea.