z-logo
Premium
Functional decoupling of melatonin suppression and circadian phase resetting in humans
Author(s) -
Rahman Shadab A.,
St Hilaire Melissa A.,
Gronfier Claude,
Chang AnneMarie,
Santhi Nayantara,
Czeisler Charles A.,
Klerman Elizabeth B.,
Lockley Steven W.
Publication year - 2018
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp275501
Subject(s) - melatonin , circadian rhythm , nocturnal , darkness , phase response curve , zeitgeber , endocrinology , medicine , stimulus (psychology) , biology , psychology , circadian clock , psychotherapist , botany
Key points There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light (∼9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other.Abstract Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9‐day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim‐light control (<3 lux; n =  6) or (ii) two 12‐min intermittent bright light pulses (IBL) separated by 36 min of darkness (∼9500 lux; n  = 10). We compared these results with historical data from additional LE patterns: (i) dim‐light control (<3 lux; n  = 11); (ii) single continuous bright light exposure of 12 min ( n  = 9), 1.0 h ( n  = 10) or 6.5 h ( n  = 6); or (iii) an IBL light pattern consisting of six 15‐min pulses with 1.0 h dim‐light recovery intervals between them during a total of 6.5 h ( n  = 7). All light exposure groups had significantly greater phase‐delay shifts than the dim‐light control condition ( P  < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light‐induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here