z-logo
Premium
Rapid versus slow ascending vasodilatation: intercellular conduction versus flow‐mediated signalling with tetanic versus rhythmic muscle contractions
Author(s) -
Sinkler Shenghua Y.,
Segal Steven S.
Publication year - 2017
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp275186
Subject(s) - vasodilation , medicine , hyperpolarization (physics) , endocrinology , microcirculation , skeletal muscle , nitric oxide , arteriole , anatomy , chemistry , biology , organic chemistry , nuclear magnetic resonance spectroscopy
Key points In response to exercise, vasodilatation ascends from downstream arterioles into upstream feed arteries (FAs). We hypothesized that the signalling events underlying ascending vasodilatation vary with the intensity and duration of skeletal muscle contraction. In the gluteus maximus muscle of C57BL/6 mice, brief tetanic contraction evoked rapid onset vasodilatation (ROV) (<1 s) throughout the resistance network. Selective damage to endothelium midway between FAs and primary arterioles eliminated ROV only in FAs. Blocking SK Ca and IK Ca channels attenuated ROV, implicating hyperpolarization as the underlying signal. During rhythmic twitch contractions, slow onset vasodilatation (10–15 s) in FAs remained intact following loss of ROV and was eliminated following nitric oxide synthase inhibition. Tetanic contraction initiates hyperpolarization that conducts along endothelium into FAs. Rhythmic twitch contractions stimulate FA endothelium to release nitric oxide in response to elevated shear stress secondary to metabolic dilatation of arterioles. Complementary endothelial signalling pathways for ascending vasodilatation ensure increased oxygen delivery to active skeletal muscle.Abstract In response to exercise, vasodilatation initiated within the microcirculation of skeletal muscle ascends the resistance network into upstream feed arteries (FAs) located external to the tissue. Ascending vasodilatation (AVD) is essential for reducing FA resistance that otherwise restricts blood flow into the microcirculation. In the present study, we tested the hypothesis that signalling events underlying AVD vary with the intensity and duration of muscle contraction. In the gluteus maximus muscle of anaesthetized male C57BL/6 mice (aged 3–4 months), brief tetanic contraction (100 Hz for 500 ms) evoked rapid onset vasodilatation (ROV) in FAs that peaked within 4 s. By contrast, during rhythmic twitch contractions (4 Hz), slow onset vasodilatation (SOV) of FAs began after ∼10 s and plateaued within 30 s. Selectively damaging the endothelium with light‐dye treatment midway between a FA and its primary arteriole eliminated ROV in the FA along with conducted vasodilatation of the FA initiated on the arteriole using ACh microiontophoresis. Superfusion of SK Ca and IK Ca channel blockers UCL 1684 + TRAM 34 attenuated ROV, implicating endothelial hyperpolarization as the underlying signal. Nevertheless, the SOV of FAs during rhythmic contractions persisted until inhibition of nitric oxide synthase with N ω ‐nitro‐ l ‐arginine methyl ester. Thus, ROV of FAs reflects hyperpolarization of downstream arterioles that conducts along the endothelium into proximal FAs. By contrast, SOV of FAs reflects the local production of nitric oxide by the endothelium in response to luminal shear stress, which increases secondary to arteriolar dilatation downstream. Thus, AVD ensures increased oxygen delivery to active muscle fibres by reducing upstream resistance via complementary signalling pathways that reflect the intensity and duration of muscle contraction.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here