z-logo
Premium
Sex differences in the role of phospholipase A 2 ‐dependent arachidonic acid pathway in the perivascular adipose tissue function in pigs
Author(s) -
Ahmad Abdulla A.,
Randall Michael D.,
Roberts Richard E.
Publication year - 2017
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp274831
Subject(s) - medicine , endocrinology , thromboxane a2 , adipose tissue , thromboxane , thromboxane receptor , vasoconstriction , contraction (grammar) , cyclooxygenase , vascular smooth muscle , artery , vasoconstrictor agents , blood vessel , biology , receptor , platelet , smooth muscle , enzyme , biochemistry
Key points The fat surrounding blood vessels (perivascular adipose tissue or PVAT) releases vasoactive compounds that regulate vascular smooth muscle tone. There are sex differences in the regulation of vascular tone, but, to date, no study has investigated whether there are sex differences in the regulation of blood vessel tone by PVAT. This study has identified that the cyclooxygenase products thromboxane and PGF 2α are released from coronary artery PVAT from pigs. Thromboxane appears to mediate the PVAT‐induced contraction in arteries from females, whereas PGF 2α appears to mediate the contraction in arteries from males. These sex differences in the role of these prostanoids in the PVAT‐induced contraction can be explained by a greater release of thromboxane from PVAT from female animals and greater sensitivity to PGF 2α in the porcine coronary artery from males.Abstract Previous studies have demonstrated that perivascular adipose tissue (PVAT) causes vasoconstriction. In this present study, we determined the role of cyclooxygenase‐derived prostanoids in this contractile response and determined whether there were any sex differences in the regulation of vascular tone by PVAT. Contractions in isolated segments of coronary arteries were determined using isolated tissue baths and isometric tension recording. Segments were initially cleaned of PVAT, which was then re‐added to the tissue bath and changes in tone measured over 1 h. Levels of PGF 2α and thromboxane B 2 (TXB 2 ) were quantified by ELISA, and PGF 2α (FP) and thromboxane A 2 (TP) receptor expression determined by Western blotting. In arteries from both male and female pigs, re‐addition of PVAT caused a contraction, which was partially inhibited by the cyclooxygenase inhibitors indomethacin and flurbiprofen. The FP receptor antagonist AL8810 attenuated the PVAT‐induced contraction in arteries from males, whereas the TP receptor antagonist GR32191B inhibited the PVAT‐induced contraction in arteries from females. Although there was no difference in PGF 2α levels in PVAT between females and males, PGF 2α produced a larger contraction in arteries from males, correlating with a higher FP receptor expression. In contrast, release of TXB 2 from PVAT from females was greater than from males, but there was no difference in the contraction by the TXA 2 agonist U46619, or TP receptor expression in arteries from different sexes. These findings demonstrate clear sex differences in PVAT function in which PGF 2α and TXA 2 antagonists can inhibit the PVAT‐induced vasoconstriction in male and female PCAs, respectively.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here