z-logo
Premium
Phenome‐wide association studies: a new method for functional genomics in humans
Author(s) -
Roden Dan M.
Publication year - 2017
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp273122
Subject(s) - phenome , single nucleotide polymorphism , computational biology , biobank , biology , phenotype , genetic architecture , genetic association , functional genomics , genomics , genome wide association study , genetics , genome , gene , genotype
In experimental physiological research, a common study design for examining the functional role of a gene or a genetic variant is to introduce that genetic variant into a model organism (such as yeast or mouse) and then to search for phenotypic consequences. The development of DNA biobanks linked to dense phenotypic information enables such an experiment to be applied to human subjects in the form of a phenome‐wide association study (PheWAS). The PheWAS paradigm takes advantage of a curated medical phenome, often derived from electronic health records, to search for associations between ‘input functions’ and phenotypes in an unbiased fashion. The most commonly studied input function to date has been single nucleotide polymorphisms (SNPs), but other inputs, such as sets of SNPs or a disease or drug exposure, are now being explored to probe the genetic and phenotypic architecture of human traits. Potential outcomes of these approaches include defining subsets of complex diseases (that can then be targeted by specific therapies) and drug repurposing.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here