z-logo
Premium
Unexpected reductions in regional cerebral perfusion during prolonged hypoxia
Author(s) -
Lawley Justin S.,
Macdonald Jamie H.,
Oliver Samuel J.,
Mullins Paul G.
Publication year - 2016
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp272557
Subject(s) - cerebral blood flow , hypoxia (environmental) , default mode network , hypoxic pulmonary vasoconstriction , cerebral perfusion pressure , vasoconstriction , vasodilation , perfusion , medicine , cardiology , anesthesia , cerebral hypoxia , cerebral circulation , blood flow , neuroscience , functional magnetic resonance imaging , oxygen , psychology , ischemia , chemistry , organic chemistry
Key points Cognitive performance is impaired by hypoxia despite global cerebral oxygen delivery and metabolism being maintained. Using arterial spin labelled (ASL) magnetic resonance imaging, this is the first study to show regional reductions in cerebral blood flow (CBF) in response to decreased oxygen supply (hypoxia) at 2 h that increased in area and became more pronounced at 10 h. Reductions in CBF were seen in brain regions typically associated with the ‘default mode’ or ‘task negative’ network. Regional reductions in CBF, and associated vasoconstriction, within the default mode network in hypoxia is supported by increased vasodilatation in these regions to a subsequent hypercapnic (5% CO 2 ) challenge. These results suggest an anatomical mechanism through which hypoxia may cause previously reported deficits in cognitive performance.Abstract Hypoxia causes an increase in global cerebral blood flow, which maintains global cerebral oxygen delivery and metabolism. However, neurological deficits are abundant under hypoxic conditions. We investigated regional cerebral microvascular responses to acute (2 h) and prolonged (10 h) poikilocapnic normobaric hypoxia. We found that 2 h of hypoxia caused an expected increase in frontal cortical grey matter perfusion but unexpected perfusion decreases in regions of the brain normally associated with the ‘default mode’ or ‘task negative’ network. After 10 h in hypoxia, decreased blood flow to the major nodes of the default mode network became more pronounced and widespread. The use of a hypercapnic challenge (5% CO 2 ) confirmed that these reductions in cerebral blood flow from hypoxia were related to vasoconstriction. Our findings demonstrate steady‐state deactivation of the default network under acute hypoxia, which become more pronounced over time. Moreover, these data provide a unique insight into the nuanced localized cerebrovascular response to hypoxia that is not attainable through traditional methods. The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions assumed to play a role in declarative and procedural memory, provides an anatomical mechanism through which hypoxia may cause deficits in working memory.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here