z-logo
Premium
Assessment of in vivo fetal growth and placental vascular function in a novel intrauterine growth restriction model of progressive uterine artery occlusion in guinea pigs
Author(s) -
Herrera Emilio A.,
Alegría René,
Farias Marcelo,
DíazLópez Farah,
Hernández Cherie,
Uauy Ricardo,
Regnault Timothy R. H.,
Casanello Paola,
Krause Bernardo J.
Publication year - 2016
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jp271467
Subject(s) - intrauterine growth restriction , fetus , uterine artery , medicine , placenta , gestation , uterus , endocrinology , biology , pregnancy , genetics
Key points Intrauterine growth restriction (IUGR) is associated with short‐ and long‐term detrimental cardiometabolic effects. Mice and rats are commonly used to assess IUGR, but differences in placental and fetal developmental physiology relative to those in humans highlight the need for alternative small animal IUGR models. We developed a guinea pig IUGR model by gradual occlusion of uterine arteries by ameroid constrictor implantation. In this model, reduced uterine blood flow was associated with IUGR, allowing in vivo assessment of fetal growth trajectory and umbilico‐placental vascular function in conscious animals. The intervention induces placental vascular dysfunction and remodelling, as well as altered fetal abdominal growth resulting in an asymmetric IUGR and preserved brain growth.Abstract Intra‐uterine growth restriction (IUGR) is associated with short and long‐term metabolic and cardiovascular alterations. Mice and rats have been extensively used to study the effects of IUGR, but there are notable differences in fetal and placental physiology relative to those of humans that argue for alternative animal models. This study proposes that gradual occlusion of uterine arteries from mid‐gestation in pregnant guinea pigs produces a novel model to better assess human IUGR. Fetal biometry and in vivo placental vascular function were followed by sonography and Doppler of control pregnant guinea pigs and sows submitted to surgical placement of ameroid constrictors in both uterine arteries (IUGR) at mid‐gestation (35 days). The ameroid constrictors induced a reduction in the fetal abdominal circumference growth rate (0.205 cm day −1 ) compared to control (0.241 cm day −1 , P  < 0.001) without affecting biparietal diameter growth. Umbilical artery pulsatility and resistance indexes at 10 and 20 days after surgery were significantly higher in IUGR animals than controls ( P  < 0.01). These effects were associated with a decrease in the relative luminal area of placental chorionic arteries (21.3 ± 2.2% vs . 33.2 ± 2.7%, P  < 0.01) in IUGR sows at near term. Uterine artery intervention reduced fetal (∼30%), placental (∼20%) and liver (∼50%) weights ( P  < 0.05), with an increased brain to liver ratio ( P  < 0.001) relative to the control group. These data demonstrate that the ameroid constrictor implantations in uterine arteries in pregnant guinea pigs lead to placental vascular dysfunction and altered fetal growth that induces asymmetric IUGR.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here