z-logo
Premium
Cerebral autoregulation index at high altitude assessed by thigh‐cuff and transfer function analysis techniques
Author(s) -
Subudhi Andrew W.,
Grajzel Katalin,
Langolf Robert J.,
Roach Robert C.,
Panerai Ronney B.,
Davis John E.
Publication year - 2014
Publication title -
experimental physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.925
H-Index - 101
eISSN - 1469-445X
pISSN - 0958-0670
DOI - 10.1113/expphysiol.2014.082479
Subject(s) - cuff , autoregulation , cerebral autoregulation , thigh , effects of high altitude on humans , cardiology , medicine , anatomy , surgery , blood pressure
New FindingsWhat is the central question of this study? Whether cerebral autoregulation (CA) is impaired at high altitude and associated with acute mountain sickness remains controversial. We sought to compare two of the most common methods to assess dynamic CA in subjects who ascended to 3424 m and acclimatized.What is the main finding and its importance? We found that CA was reduced at 3424 m when assessed by the classic thigh‐cuff inflation–deflation technique, but not when evaluated by transfer function analysis. These findings suggest that the cerebral vasculature of healthy individuals may become less able to buffer a large, abrupt drop in arterial blood pressure, while still maintaining the ability to regulate slow rhythmical oscillations, during periods of moderate hypoxaemia.Abstract The occurrence and implications of changes in cerebral autoregulation (CA) at high altitude are controversial and confounded by differences in methods used to assess CA. To compare two of the most common methods of dynamic CA assessment, we studied 11 young, healthy sea‐level residents (six females and five males; 20.5 ± 2.3 years old) as they ascended to 3424 m and acclimatized over 13 days. A common autoregulation index (ARI) was calculated from the following: (i) transfer function analysis (TFA ARI) of resting oscillations in arterial blood pressure (ABP; finger plethysmography) and middle cerebral artery blood velocity (MCAv; transcranial Doppler); and (ii) MCAv responses following large, abrupt reductions in ABP using the classic thigh‐cuff technique (Cuff ARI). Symptoms of acute mountain sickness (AMS) were monitored using the Lake Louise AMS Questionnaire. Cuff ARI scores decreased ( P  = 0.021) as subjects ascended from low (4.7 ± 1.5) to high altitude (3.2 ± 1.6) and did not change after 13 days of acclimatization (2.9 ± 1.3). The TFA ARI scores were not affected by ascent or acclimatization to 3424 m. Neither Cuff nor TFA ARI scores were correlated with AMS symptoms. These findings suggest that the cerebral vasculature of healthy individuals may become less able to buffer large step changes in ABP, while still maintaining the ability to regulate slow rhythmical oscillations, during periods of moderate hypoxaemia. Given the inherent differences in the autoregulatory stimulus between methods, multiple assessment techniques may be needed to clarify the implications of changes in cerebrovascular regulation at high altitude.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom