z-logo
Premium
Proximal reabsorption with changing tubular fluid inflow in rat nephrons
Author(s) -
Romano G,
Favret G,
Damato R,
Bartoli E
Publication year - 1998
Publication title -
experimental physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.925
H-Index - 101
eISSN - 1469-445X
pISSN - 0958-0670
DOI - 10.1113/expphysiol.1998.sp004090
Subject(s) - reabsorption , tubular fluid , nephron , medicine , chemistry , endocrinology , proximal tubule , tubule , renal function , peritubular capillaries , kidney , oncotic pressure , renal physiology , perfusion , anatomy , biology , albumin
The relative contribution of intraluminal versus peritubular factors in mediating glomerulo‐tubular balance (GTB) is still controversial. We modulated the load of tubular fluid to the proximal tubule of single nephrons of rats by injecting oil into the efferent arteries (EAO). In fifty nephrons the changes in reabsorption induced by obstruction occurred in the same direction as, and were significantly correlated with, the simultaneous changes in single nephron glomerular filtration rate (SNGFR) (y = ‐0.54 + 0.92x, R = 0.91, P < 0.0001). In an additional set of thirty‐nine nephrons the load of tubular fluid was changed, during EAO, by partial collection from Bowman's space or from the early proximal convolution. Thus, the rate of tubular fluid delivery along the proximal tubule was changed in an experimental situation that prevented any modification in the oncotic pressure of peritubular capillaries. The changes in proximal deliveries during this experimental condition were significantly correlated with those during reabsorption (y = ‐2.87 + 0.71x, R = 0.82, P < 0.0001). These data demonstrate that GTB is fully expressed even when the native peritubular environment is kept constant while the rate of perfusion of proximal tubular segments with native tubular fluid is changed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here