Premium
A sympathetic view of blood pressure control at high altitude: new insights from microneurographic studies
Author(s) -
Simpson Lydia L.,
Steinback Craig D.,
Stembridge Mike,
Moore Jonathan P.
Publication year - 2020
Publication title -
experimental physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.925
H-Index - 101
eISSN - 1469-445X
pISSN - 0958-0670
DOI - 10.1113/ep089194
Subject(s) - blood pressure , sympathetic activity , medicine , cardiology , effects of high altitude on humans , heart rate , anatomy
New FindingsWhat is the topic of the review? Sympathoexcitation and sympathetic control of blood pressure at high altitude.What advances does it highlight? Sustained sympathoexcitation is fundamental to integrative control of blood pressure in humans exposed to chronic hypoxia. The largest gaps in current knowledge are in understanding the complex mechanisms by which central sympathetic outflow is regulated at high altitude.Abstract High altitude (HA) hypoxia is a potent activator of the sympathetic nervous system, eliciting increases in sympathetic vasomotor activity. Microneurographic evidence of HA sympathoexcitation dates back to the late 20th century, yet only recently have the characteristics and underpinning mechanisms been explored in detail. This review summarises recent findings and highlights the importance of HA sympathoexcitation for the regulation of blood pressure in lowlanders and indigenous highlanders. In addition, this review identifies gaps in our knowledge and corresponding avenues for future study.