
Boundary values for an eigenvalue problem with a singular potential
Author(s) -
Münevver Tuz
Publication year - 2017
Publication title -
an international journal of optimization and control: theories and applications/e-an international journal of optimization and control: theories and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.287
H-Index - 6
eISSN - 2146-5703
pISSN - 2146-0957
DOI - 10.11121/ijocta.01.2017.00507
Subject(s) - eigenvalues and eigenvectors , mathematics , sturm–liouville theory , interval (graph theory) , mathematical analysis , boundary value problem , function (biology) , inverse , boundary (topology) , schrödinger equation , inverse problem , mathematical physics , physics , combinatorics , quantum mechanics , geometry , evolutionary biology , biology
In this paper we consider the inverse spectral problem on the interval [0,1]. This determines the three-dimensional Schrödinger equation with from singular symmetric potential. We show that the two spectrums uniquely identify the potential function q(r) in a single Sturm-Liouville equation, and we obtain new evidence for the difference in the q(r)-q(r)of the Hochstadt theorem.