z-logo
Premium
ON SIMPLE ZEROS OF THE DEDEKIND ZETA‐FUNCTION OF A QUADRATIC NUMBER FIELD
Author(s) -
Wu Xiaosheng,
Zhao Lilu
Publication year - 2019
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/s0025579319000196
Subject(s) - mathematics , dedekind cut , rectangle , algebraic number field , simple (philosophy) , function field , riemann zeta function , arithmetic zeta function , prime zeta function , field (mathematics) , function (biology) , quadratic equation , combinatorics , pure mathematics , geometry , philosophy , epistemology , evolutionary biology , biology
We study the number of non‐trivial simple zeros of the Dedekind zeta‐function of a quadratic number field in the rectangle { + i t : 0 < < 1 , 0 < t < T } . We prove that such a number exceeds T 6 / 7 − if T is sufficiently large. This improves upon the classical lower bound T 6 / 11established by Conrey et al [Simple zeros of the zeta function of a quadratic number field. I. Invent. Math. 86 (1986), 563–576].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom