Premium
On the non‐homogeneous quadratic Bessel zeta function
Author(s) -
Spreafico M.
Publication year - 2004
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/s0025579300015552
Subject(s) - bessel function , mathematics , homogeneous , struve function , quadratic equation , mathematical analysis , riemann zeta function , function (biology) , bessel polynomials , constant (computer programming) , arithmetic zeta function , pure mathematics , combinatorics , geometry , classical orthogonal polynomials , macdonald polynomials , gegenbauer polynomials , evolutionary biology , computer science , orthogonal polynomials , biology , programming language , difference polynomials
This article studies the non‐homogeneous quadratic Bessel zeta function ζ RB (s, v, a) , defined as the sum of the squares of the positive zeros of the Bessel function J v (z) plus a positive constant. In particular, explicit formulas for the main associated zeta invariants, namely, poles and residua ζ RB (0, v, a) and ζ RB (0, v, a) , are given.