Premium
A non‐Schlegelian polyhedral map on the torus
Author(s) -
Altshuler Amos,
Brehm Ulrich
Publication year - 1984
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/s0025579300010688
Subject(s) - mathematics , convex polytope , polytope , regular polygon , combinatorics , torus , boundary (topology) , toroid , diagram , convex hull , geometry , convex analysis , mathematical analysis , convex optimization , statistics , physics , plasma , quantum mechanics
We describe a toroidal polyhedral map which can be geometrically realized in R 3 but not via a Schlegel diagram of a convex 4‐polytope. Moreover, this map is not isomorphic to a subcomplex of the boundary complex of any convex polytope.