Premium
On Infinitesimal Increase of Volumes of Morphological Transforms
Author(s) -
Kiderlen Markus,
Rataj Jan
Publication year - 2006
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/s002557930000005x
Subject(s) - mathematics , disjoint sets , mathematical analysis , geometry , measure (data warehouse) , combinatorics , discrete mathematics , computer science , database
Let B (“black”) and W (“white”) be disjoint compact test sets in ℝ d , and consider the volume of all its simultaneous shifts keeping B inside and W outside a compact set A ⊂ ℝ d . If the union B ∪ W is rescaled by a factor tending to zero, then the rescaled volume converges to a value determined by the surface area measure of A and the support functions of B and W , provided that A is regular enough ( e.g. , polyconvex). An analogous formula is obtained for the case when the conditions B ⊂ A and W ⊂ A C are replaced by prescribed threshold volumes of B in A and W in A C . Applications in stochastic geometry are discussed. First, the hit distribution function of a random set with an arbitrary compact structuring element B is considered. Its derivative at 0 is expressed in terms of the rose of directions and B . An analogous result holds for the hit‐or‐miss function. Second, in a design based setting, different random digitizations of a deterministic set A are treated. It is shown how the number of configurations in such a digitization is related to the surface area measure of A as the lattice distance converges to zero.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom