z-logo
Premium
Fock Space and the Poisson Process
Author(s) -
Pathmanathan S.,
VincentSmith G. F.
Publication year - 2004
Publication title -
proceedings of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 65
eISSN - 1460-244X
pISSN - 0024-6115
DOI - 10.1112/s0024611504014820
Subject(s) - mathematics , semimartingale , fock space , poisson distribution , measure (data warehouse) , bounded function , isomorphism (crystallography) , compound poisson process , space (punctuation) , pure mathematics , combinatorics , discrete mathematics , mathematical analysis , poisson process , quantum mechanics , linguistics , chemistry , philosophy , database , crystal structure , crystallography , statistics , physics , computer science
Using the Wiener–Poisson isomorphism, we show that if ( F t ) 0 ⩽ t ⩽ 1 is a real, bounded, predictable process adapted to the filtration of a compensated Poisson process ( X t ) 0 ⩽ t ⩽ 1 , and ifM ^ t is the operator corresponding to multiplication by M t = ∫ 0 t F s d X s , then for any regular self‐adjoint quantum semimartingale J = ( J t ) 0 ⩽ t ⩽ 1 , the essentially self‐adjoint quantum semimartingale(M ^ t + J t ) 0 ⩽ t ⩽ 1satisfies the quantum Ito formula. We also introduce a generalisation of the Poisson process to a measure space ( M , M, μ) as an isometry I : L 2 ( M , M, μ) → L 2 (Ω, F, P) and give a new construction of the generalised Wiener–Poisson isomorphism W I : F + ( L 2 ( M )) → L 2 (Ω, F, P) using exponential vectors. Using C * ‐algebra theory, given any measure space we construct a canonical generalised Poisson process. Unlike other constructions, we make no a priori use of Poisson measures. 2000 Mathematics Subject Classification 60G20, 60G35, 46L53, 81S25.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here