z-logo
Premium
E‐Theory is a Special Case of KK‐Theory
Author(s) -
Manuilov V.,
Thomsen K.
Publication year - 2004
Publication title -
proceedings of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 65
eISSN - 1460-244X
pISSN - 0024-6115
DOI - 10.1112/s0024611503014436
Subject(s) - mathematics , separable space , homomorphism , hilbert space , unital , homotopy , mathematics subject classification , pure mathematics , algebra over a field , discrete mathematics , combinatorics , mathematical analysis
Let A and B be C*‐algebras, with A separable and B σ‐unital and stable. It is shown that there are natural isomorphisms E ( A , B ) = K K ( S A , Q ( B ) ) = [ S A , Q ( B ) ⊗ K ] , where SA = C 0 (0, 1) ⊗ A , […, …] denotes the set of homotopy classes of *‐homomorphisms, Q ( B ) = M ( B ) / B is the generalized Calkin algebra, and K denotes the C*‐algebra of compact operators of an infinite‐dimensional separable Hilbert space. 2000 Mathematics Subject Classification 19K35, 19K33, 46M15.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here