Premium
Rigidity of Hyperbolic Sets on Surfaces
Author(s) -
Pinto A. A.,
Rand D. A.
Publication year - 2005
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/s0024610704006052
Subject(s) - diffeomorphism , mathematics , invariant (physics) , affine transformation , rigidity (electromagnetism) , pure mathematics , hyperbolic set , hyperbolic manifold , relatively hyperbolic group , mathematical analysis , hyperbolic function , physics , mathematical physics , quantum mechanics
Given a hyperbolic invariant set of a diffeomorphism on a surface, it is proved that, if the holonomies are sufficiently smooth, then the diffeomorphism on the hyperbolic invariant set is rigid in the sense that it is C 1+ conjugate to a hyperbolic affine model.