Premium
Exponential Integrability of Stochastic Convolutions
Author(s) -
Seidler Jan,
Sobukawa Takuya
Publication year - 2003
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/s0024610702003745
Subject(s) - extrapolation , mathematics , exponential function , convolution (computer science) , mathematical proof , hilbert space , simple (philosophy) , exponential formula , wiener process , space (punctuation) , pure mathematics , mathematical analysis , double exponential function , computer science , geometry , philosophy , epistemology , machine learning , artificial neural network , operating system
Sufficient conditions are found for stochastic convolution integrals driven by a Wiener process in a Hilbert space to belong to the Orlicz space exp L 2 ; standard exponential tail estimates follow from these results. Proofs are based on the extrapolation theory and are rather simple.