Premium
Exponential Integrability of Stochastic Convolutions
Author(s) -
Seidler Jan,
Sobukawa Takuya
Publication year - 2003
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/s0024610702003745
Subject(s) - extrapolation , mathematics , exponential function , convolution (computer science) , mathematical proof , hilbert space , simple (philosophy) , exponential formula , wiener process , space (punctuation) , pure mathematics , mathematical analysis , double exponential function , computer science , geometry , philosophy , epistemology , machine learning , artificial neural network , operating system
Sufficient conditions are found for stochastic convolution integrals driven by a Wiener process in a Hilbert space to belong to the Orlicz space exp L 2 ; standard exponential tail estimates follow from these results. Proofs are based on the extrapolation theory and are rather simple.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom