Premium
Multiplicative Functions on Arithmetic Progressions. VII: Large Moduli
Author(s) -
Elliott P. D. T. A.
Publication year - 2002
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/s0024610702003228
Subject(s) - multiplicative function , integer (computer science) , moduli , mathematics , combinatorics , prime factor , unit (ring theory) , prime (order theory) , function (biology) , arithmetic progression , arithmetic , discrete mathematics , physics , mathematical analysis , quantum mechanics , mathematics education , evolutionary biology , computer science , biology , programming language
A complex valued function g, defined on the positive integers, is multiplicative if it satisfies g ( ab ) = g ( a ) g ( b ) whenever the integers a and b are mutually prime. THEOREM 1. Let D be an integer , 2 ⩽ D ⩽ x , ε > 0. Let g be a multiplicative function with values in the complex unit disc . There is a character χ 1(mod D ) , real if g is real, such that when 0 < γ < 1,∑n ⩽ y n ≡ a ( mod D )g ( n ) − 1 ϕ ( D )∑n ⩽ y( n , D ) = 1g ( n ) −χ 1 ( a )ϕ ( D )*¯ ∑ n ⩽ yg ( n ) χ 1 ( n ) ≪ y ϕ ( D )(log D log y)1 / 4 − ɛuniformly for ( a , D ) = 1, D ⩽ y , x γ ⩽ y ⩽ x , the implied constant depending at most upon ε, γ.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom