z-logo
Premium
Antibound States and Exponentially Decaying Sturm–Liouville Potentials
Author(s) -
Eastham M. S. P.
Publication year - 2002
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/s0024610702003216
Subject(s) - sturm–liouville theory , integrable system , exponential growth , mathematics , boundary value problem , mathematical physics , neumann boundary condition , dirichlet boundary condition , mathematical analysis , dirichlet distribution , physics , pure mathematics
We consider the Sturm–Liouville equation y ″( x )+{λ− q ( x )} y ( x )=0 (0⩽ x <∞) (1.1) with a boundary condition at x = 0 which can be either the Dirichlet condition y (0)=0 (1.2) or the Neumann condition y ′(0)=0 (1.3) As usual, λ is the complex spectral parameter with 0 ⩽ arg λ < 2π, and the potential q is real‐valued and locally integrable in [0, ∞).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom