z-logo
Premium
Tangential Boundary Behaviour of Harmonic and Holomorphic Functions
Author(s) -
Twomey J. B.
Publication year - 2002
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/s0024610701002873
Subject(s) - holomorphic function , harmonic function , combinatorics , boundary (topology) , zero (linguistics) , mathematics , poisson kernel , kernel (algebra) , lebesgue integration , hausdorff space , mathematical analysis , philosophy , linguistics
Let K be a kernel on R n , that is, K is a non‐negative, unbounded L 1 function that is radially symmetric and decreasing. We define the convolution K * F byK * F ( x ) = ∫ R nK ( x − t ) F ( t ) d t ,and note from L p ‐capacity theory [ 11 , Theorem 3] that, if F ∈ L p , p > 1, then K * F exists as a finite Lebesgue integral outside a set A ⊂ R n with C K,p ( A ) = 0. For a Borel set A ,C K , p( A ) = inf{‖ F ‖p p : F ⩾ 0 , K * F ⩾ 1   on   A } ,where‖ F ‖ p =( ∫ R n| F | p d x )1 / p.We define the Poisson kernel forR + n + 1= {( x , y ) : x ∈ R n , y > 0} byP y ( x ) =c n y(| x | 2 + y 2 )( n + 1 ) / 2,c n = Γ (( n + 1 ) / 2 ) π −( n + 1 ) / 2,and setu ( x , y ) = ∫ R nP y ( x − t ) K * F ( t ) d t ,( x , y ) ∈ R + n + 1 .Thus u is the Poisson integral of the potential f = K * F , and we write u = P y *( K * F )= P y * f = P [ f ]. We are concerned here with the limiting behaviour of such harmonic functions at boundary points ofR + n + 1, and in particular with the tangential boundary behaviour of these functions, outside exceptional sets of capacity zero or Hausdorff content zero.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here