Premium
The Extension Group of the Simple Modules Over the First Weyl Algebra
Author(s) -
Bavula V. V.
Publication year - 2000
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609399006608
Subject(s) - mathematics , simple (philosophy) , extension (predicate logic) , simple module , weyl algebra , zero (linguistics) , algebra over a field , weyl group , pure mathematics , mathematics subject classification , verma module , field (mathematics) , lie algebra , computer science , linguistics , philosophy , epistemology , programming language
The aim of this paper is to prove that for certain generalized Weyl algebras A (including the first Weyl algebra A 1 over a field of characteristic zero) and for every simple left (right) A ‐module M , there are infinitely many non‐isomorphic simple left (right) A ‐modules { N i } such that E x t A 1 ( M , N i ) ≠ 0 (respectivelyExt A 1 ( N i , M ) ≠ 0 ). 1991 Mathematics Subject Classification 18G15, 16G.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom