z-logo
Premium
The Kernel of a Hankel Operator on the Bergman Space
Author(s) -
Das Namita
Publication year - 1999
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609398004949
Subject(s) - bergman space , mathematics , bergman kernel , mathematics subject classification , hankel matrix , invariant subspace , reproducing kernel hilbert space , pure mathematics , rank (graph theory) , operator (biology) , kernel (algebra) , subspace topology , linear subspace , invariant (physics) , invariant subspace problem , hankel transform , space (punctuation) , algebra over a field , mathematical analysis , operator space , finite rank operator , hilbert space , combinatorics , banach space , mathematical physics , computer science , repressor , chemistry , operating system , biochemistry , transcription factor , bounded function , gene , bessel function
In this paper we characterise the kernel of a little Hankel operator on the Bergman spaceL a 2 ( D )in terms of the inner divisors, and obtain a characterisation for finite rank little Hankel operators using the invariant subspace theory technique. 1991 Mathematics Subject Classification 47B35.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here