Premium
The Glauberman Correspondence and Subgroups of Operator Groups: a Counterexample
Author(s) -
Puin Christopher,
Wolf T. R.
Publication year - 1997
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609396002172
Subject(s) - counterexample , mathematics , automorphism , conjecture , mathematics subject classification , coprime integers , operator (biology) , combinatorics , pure mathematics , finite group , group (periodic table) , organic chemistry , transcription factor , gene , biochemistry , chemistry , repressor
Let G and A be finite groups with coprime orders, and suppose that A acts on G by automorphisms. Let π( G , A ):Irr A ( G )→Irr(C G ( A )) be the Glauberman–Isaacs correspondence. Let B ⩽ A and χ∈Irr A ( G ). We exhibit a counterexample to the conjecture that χπ( G , A ) is an irreducible constituent of the restriction of χπ( G , B ) to C G ( A ). 1991 Mathematics Subject Classification 20C15.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom