Premium
Embedding l ∞ into the Space of Bounded Operators on Certain Banach Spaces
Author(s) -
Androulakis G.,
Beanland K.,
Dilworth S. J.,
Sanacory F.
Publication year - 2006
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609306018868
Subject(s) - mathematics , banach space , bounded function , embedding , space (punctuation) , sequence (biology) , basis (linear algebra) , mathematics subject classification , discrete mathematics , linear operators , pure mathematics , sequence space , approximation property , combinatorics , mathematical analysis , geometry , linguistics , philosophy , artificial intelligence , biology , computer science , genetics
Sufficient conditions are given on a Banach space X which ensure that embeds in L( X ), the space of all bounded linear operators on X . A basic sequence e n is said to be quasisubsymmetric if for any two increasing sequences ( k n ) and ( l n ) of positive integers with ( k n ) ⩽ ( l n ) for all n , ( e k n) dominates ( e l n). If a Banach space X has a seminormalized quasisubsymmetric basis then l ∞ embeds in l ( X ). 2000 Mathematics Subject Classification 46B28 (primary), 46B03 (secondary).