z-logo
Premium
Sub‐ and Superadditive Properties of Fejér's sine Polynomial
Author(s) -
Alzer Horst,
Koumandos Stamatis
Publication year - 2006
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609306018273
Subject(s) - mathematics , superadditivity , combinatorics , converse , sine , polynomial , mathematical analysis , geometry
LetS n ( x ) = ∑ k = 1 n( sin ( k x ) ) / kbe Fejér's sine polynomial. We prove the following statements.The inequality( S n ( x + y ) ) α( x + y ) rβ ⩽( S n ( x ) ) α x rβ +( S n ( y ) ) α y rβ ( n ∈ N ; α , rβ ∈ R )holds for all x , y ∈ (0, π) with x + y < π if and only if α ⩾ 0 and α + rβ ⩽ 1. The converse of the above inequality is valid for all x , y ∈ (0, π) with x + y < π if and only if α ⩽ 0 and α + rβ ⩾ 1. For all n ∈ N and x , y ∈ [0, π] we have 0 ⩽ S n ( x ) + S n ( y ) − S n ( x + y ) ⩽ 3 2 3 . Both bounds are best possible.2000 Mathematics Subject Classification 42A05, 26D05 (primary), 39B62 (secondary).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here