z-logo
Premium
On the Existence of Extremals for the Sobolev Trace Embedding Theorem with Critical Exponent
Author(s) -
Bonder Julián Fernández,
Rossi Julio D.
Publication year - 2005
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609304003819
Subject(s) - mathematics , sobolev space , trace (psycholinguistics) , sobolev inequality , bounded function , exponent , embedding , domain (mathematical analysis) , mathematics subject classification , critical exponent , sobolev spaces for planar domains , pure mathematics , mathematical analysis , interpolation space , functional analysis , geometry , philosophy , linguistics , artificial intelligence , scaling , computer science , biochemistry , chemistry , gene
In this paper, the existence problem is studied for extremals of the Sobolev trace inequality W 1,p (ω)→ L p* (∂Ω), where Ω is a bounded smooth domain in R N , p *= p ( N −1)/( N − p ), is the critical Sobolev exponent, and 1 < p < N . 2000 Mathematics Subject Classification 35J65 (primary), 35B33 (secondary).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom