z-logo
Premium
On the Existence of Extremals for the Sobolev Trace Embedding Theorem with Critical Exponent
Author(s) -
Bonder Julián Fernández,
Rossi Julio D.
Publication year - 2005
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609304003819
Subject(s) - mathematics , sobolev space , trace (psycholinguistics) , sobolev inequality , bounded function , exponent , embedding , domain (mathematical analysis) , mathematics subject classification , critical exponent , sobolev spaces for planar domains , pure mathematics , mathematical analysis , interpolation space , functional analysis , geometry , philosophy , linguistics , artificial intelligence , scaling , computer science , biochemistry , chemistry , gene
In this paper, the existence problem is studied for extremals of the Sobolev trace inequality W 1,p (ω)→ L p* (∂Ω), where Ω is a bounded smooth domain in R N , p *= p ( N −1)/( N − p ), is the critical Sobolev exponent, and 1 < p < N . 2000 Mathematics Subject Classification 35J65 (primary), 35B33 (secondary).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here