z-logo
Premium
The Operator Hilbert Space OH and Type III Von Neumann Algebras
Author(s) -
Pisier Gilles
Publication year - 2004
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s002460930400311x
Subject(s) - mathematics , von neumann's theorem , von neumann algebra , hilbert space , affiliated operator , embedding , operator space , von neumann architecture , abelian von neumann algebra , pure mathematics , operator (biology) , unitary operator , type (biology) , algebra over a field , space (punctuation) , operator algebra , multiplication operator , jordan algebra , finite rank operator , banach space , algebra representation , linguistics , repressor , artificial intelligence , chemistry , computer science , biochemistry , transcription factor , gene , philosophy , ecology , biology
A proof is given to show that the operator Hilbert space OH does not embed completely isomorphically into the predual of a semi‐finite von Neumann algebra. This complements Junge's recent result, which admits such an embedding in the non‐semi‐finite case. 2000 Mathematics Subject Classification 46L07, 46L54, 47L25, 47L50.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here