z-logo
Premium
The Global Mckay–Ruan Correspondence Via Motivic Integration
Author(s) -
Lupercio Ernesto,
Poddar Mainak
Publication year - 2004
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s002460930300290x
Subject(s) - mathematics , generalization , quotient , pure mathematics , algebra over a field , mathematics subject classification , subject (documents) , mathematical analysis , computer science , library science
The purpose of this paper is to show how the methods of motivic integration of Kontsevich, Denef–Loeser ( Invent. Math . 135 (1999) 201–232 and Compositio Math . 131 (2002) 267–290) and Looijenga ( Astérisque 276 (2002) 267–297) can be adapted to prove the McKay–Ruan correspondence, a generalization of the McKay–Reid correspondence to orbifolds that are not necessarily global quotients. 2000 Mathematics Subject Classification 14A20, 14E15, 14F43.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here