z-logo
Premium
Complex Convexity and Vector‐Valued Littlewood–Paley Inequalities
Author(s) -
Blasco Oscar,
Pavlović Miroslav
Publication year - 2003
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609303002479
Subject(s) - mathematics , convexity , mathematics subject classification , banach space , regular polygon , space (punctuation) , pure mathematics , combinatorics , convex function , poisson distribution , geometry , statistics , financial economics , economics , linguistics , philosophy
Let 2 ⩽ p > ∞, and let X be a complex Banach space. It is shown that X is p ‐uniformly PL‐convex if and only if there exists λ > 0 such that‖ f ‖H p ( X )⩾(‖ f ( 0 )‖ p + λ ∫ D( 1 −| z | 2 )p − 1‖f ′ ( z )‖ p d A ( z ) )1 / p, for all f ∈ H p ( X ). Applications to embeddings between vector‐valued BMOA spaces defined via Poisson integral or Carleson measures are provided. 2000 Mathematics Subject Classification 46B20, 46L52.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here