Premium
A Liouville Theorem for Matrix‐Valued Harmonic Functions on Nilpotent Groups
Author(s) -
Chu ChoHo,
Vu Tuan Giao
Publication year - 2003
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609303002169
Subject(s) - mathematics , nilpotent , bounded function , pure mathematics , harmonic function , degenerate energy levels , matrix (chemical analysis) , mathematical analysis , physics , quantum mechanics , materials science , composite material
Let σ be a non‐degenerate positive M n ‐valued measure on a locally compact group G with ‖σ‖ = 1. An M n ‐valued Borel function f on G is called σ‐harmonic if f ( x ) = ∫ G f ( x y − 1) d σ ( y )for all x ∈ G . Given such a function f which is bounded and left uniformly continuous on G , it is shown that every central element in G is a period of f . Further, it is shown that f is constant if G is nilpotent or central. 2000 Mathematics Subject Classification 31C05, 43A05, 45E10, 46G10.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom