Premium
Convergence almost Everywhere of Certain Partial Sums of Fourier Integrals
Author(s) -
Carbery Anthony,
Gorges Dirk,
Marletta Gianfranco,
Thiele Christoph
Publication year - 2003
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/s0024609302001728
Subject(s) - mathematics , almost everywhere , lacunary function , infinity , fourier transform , convergence (economics) , order (exchange) , fourier series , mathematics subject classification , inverse , pure mathematics , mathematical analysis , geometry , economics , economic growth , finance
Suppose that R goes to infinity through a second‐order lacunary set. Let S R denote the R th spherical partial inverse Fourier integral on R d . Then S R f converges almost everywhere to f , provided that f satisfies∫∣ f ^ ( ξ ) log ( 8 + ∣ ξ ∣ ) ∣ 2 d ξ < ∞ .2000 Mathematics Subject Classification 42B15, 42B25, 42B08.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom