z-logo
Premium
Ultrahomogeneous Semilinear Spaces
Author(s) -
Devillers Alice
Publication year - 2002
Publication title -
proceedings of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 65
eISSN - 1460-244X
pISSN - 0024-6115
DOI - 10.1112/plms/84.1.35
Subject(s) - mathematics , isomorphism (crystallography) , automorphism , mathematics subject classification , pure mathematics , space (punctuation) , discrete mathematics , computer science , chemistry , crystal structure , crystallography , operating system
A semilinear space S is ultrahomogeneous if each isomorphism between the semilinear structures induced on two finite subsets can be extended to an automorphism of S. We give a complete classification of all finite ultrahomogeneous semilinear spaces. Our theorem extends a result of A. Gardiner on graphs and a result of A. Devillers and J. Doyen on linear spaces. 2000 Mathematical Subject Classification : 05B25, 51E14, 20B25.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom