Premium   
Distance and sum–product problems over finite   p  ‐adic rings
Author(s) - 
Lichtin Ben
Publication year - 2019
Publication title - 
proceedings of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 65
eISSN - 1460-244X
pISSN - 0024-6115
DOI - 10.1112/plms.12219
Subject(s) - mathematics , finite field , product (mathematics) , exponential function , covert , ring (chemistry) , combinatorics , pure mathematics , discrete mathematics , mathematical analysis , geometry , linguistics , philosophy , chemistry , organic chemistry
This paper uses   p  ‐adic analytic and exponential sum (mod   p  ) estimates to solve distance and sum–product type problems for subsets of(  Z  /   p  r   )   n    (   r  ⩾  1  ,  n  ⩾  2   ). In doing so, we improve upon earlier results of Covert–Iosevich–Pakianathan and extend earlier work of Hart–Iosevich–Solymosi from finite fields to finite   p  ‐adic rings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom