z-logo
Premium
The number of B h ‐sets of a given cardinality
Author(s) -
Dellamonica Domingos,
Kohayakawa Yoshiharu,
Lee Sang June,
Rödl Vojtěch,
Samotij Wojciech
Publication year - 2018
Publication title -
proceedings of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 65
eISSN - 1460-244X
pISSN - 0024-6115
DOI - 10.1112/plms.12082
Subject(s) - mathematics , cardinality (data modeling) , cardinal number (linguistics) , combinatorics , discrete mathematics , computer science , data mining , linguistics , philosophy
For any integer h ⩾ 2 , a set A of integers is called a B h ‐ set if all sumsa 1 + ⋯ + a h , witha 1 , … , a h ∈ A anda 1 ⩽ ⋯ ⩽ a h , are distinct. We obtain essentially sharp asymptotic bounds for the number of B h ‐sets of a given cardinality that are contained in the interval { 1 , ⋯ , n } . As a consequence of these bounds, we determine, for any integer m ⩽ n , the cardinality of the largest B h ‐set contained in a typical m ‐element subset of { 1 , … , n } .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom