Premium
RANKIN–SELBERG INTEGRALS FOR LOCAL SYMMETRIC SQUARE FACTORS ON G L ( 2 )
Author(s) -
Jo Yeongseong
Publication year - 2021
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/mtk.12079
Subject(s) - mathematics , square (algebra) , local field , pure mathematics , zero (linguistics) , residual , function (biology) , combinatorics , geometry , philosophy , linguistics , algorithm , evolutionary biology , biology
Let π be an irreducible admissible (complex) representation of G L ( 2 ) over a non‐Archimedean characteristic zero local field with odd residual characteristic. In this paper, we prove the equality between the local symmetric square L ‐function associated to π arising from integral representations and the corresponding Artin L ‐function for its Langlands parameter through the local Langlands correspondence. With this in hand, we show the stability of local symmetric γ‐factors attached to π under highly ramified twists.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom