Premium
A WEIGHTED MAXIMAL WEAK‐TYPE INEQUALITY
Author(s) -
Osȩkowski Adam,
Rapicki Mateusz
Publication year - 2021
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/mtk.12065
Subject(s) - mathematics , inequality , type (biology) , combinatorics , pure mathematics , discrete mathematics , mathematical analysis , biology , ecology
Let w be a dyadic A p weight ( 1 ⩽ p < ∞ ), and let M D be the dyadic Hardy–Littlewood maximal function on R d . The paper contains the proof of the estimate w { x ∈ R d : M D f ( x ) > w ( x ) } ⩽ C p[ w ] A p∫ R d| f | d x , where the constant C p does not depend on the dimension d . Furthermore, the linear dependence on[ w ] A pis optimal, which is a novel result for 1 < p < ∞ . The estimate is shown to hold in a wider context of probability spaces equipped with an arbitrary tree‐like structure. The proof rests on the Bellman function method: we construct an abstract special function satisfying certain size and concavity requirements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom