z-logo
Premium
ON POINTWISE CONVERGENCE OF SCHRÖDINGER MEANS
Author(s) -
Dimou Evangelos,
Seeger Andreas
Publication year - 2020
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/mtk.12025
Subject(s) - mathematics , pointwise convergence , pointwise , sobolev space , almost everywhere , convergence (economics) , characterization (materials science) , simple (philosophy) , regular polygon , space (punctuation) , combinatorics , real line , pure mathematics , mathematical analysis , geometry , physics , philosophy , linguistics , epistemology , optics , approx , computer science , economics , economic growth , operating system
For functions in the Sobolev space H s and decreasing sequencest n → 0 we examine convergence almost everywhere of the generalized Schrödinger means on the real line, given byS a f ( x , t n ) = exp ( i t n( − ∂ x x ) a / 2 ) f ( x ) ; here a > 0 , a ≠ 1 . For decreasing convex sequences we obtain a simple characterization of convergence a.e. for all functions in H s when 0 < s < min { a / 4 , 1 / 4 } and a ≠ 1 . We prove sharp quantitative local and global estimates for the associated maximal functions. We also obtain sharp results for the case a = 1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom